

JUM-1464DRO

УНИВЕРСАЛЬНЫЙ ФРЕЗЕРНЫЙ СТАНОК

GB

Operating Instructions

D


Gebrauchsanleitung

F

Mode d'emploi

RUS V

Инструкция по эксплуатации

Walter Meier AG

WMH Tool Group AG, Bahnstrasse 24, CH-8603 Schwerzenbach Walter Meier (Fertigung) AG, Bahnstrasse 24, CH-8603 Schwerzenbach

Walter Meier (Tool) AG, CH-8117 Fälladen

www.jettools.com; info@jettools.com

Tel. +41 (0) 44 806 47 48

Fax +41 (0) 44 806 47 58

Фирма-импортер ООО «ИТА-СПб»

Санкт-Петербург, Складской проезд, д. 4а, тел.: +7 (812) 334-33-28

Московский офис ООО «ИТА-СПб»

Москва, Переведеновский переулок, д. 17, тел.: +7 (495) 660-38-83

www.jettools.ru; info@jettools.ru

M-5000453T ...2013/12

Содержание

- 1. Гарантийные обязательства и правила техники безопасности
- 2. Рабочая среда станка
- 3. Назначение и конструкция станка
- 4. Основные характеристики станка
- 5. Передаточная система станка
- 6. Эксплуатация станка
- 7. Регулировка станка
- 8. Система подачи СОЖ и смазки станка
- 9. Транспортировка, установка и пробный запуск станка
- 10. Техническое обслуживание станка
- 11. Распространенные неисправности и их устранение
- 12. Электрическая система станка
- 13. Регулировка универсальной фрезерной головы
- 14. Сертификат точности
- 15. Упаковочный лист

Уважаемый покупатель,

Большое спасибо за доверие, которое Вы оказали нам, купив наш новый станок серии JET. Эта инструкция разработана для владельцев и обслуживающего персонала универсально-фрезерного станка модели JUM-1464DRO с целью обеспечения надежного пуска в работу и эксплуатации станка, а также его технического обслуживания. Обратите, пожалуйста, внимание на информацию этой инструкции по эксплуатации и прилагаемых документов. Полностью прочитайте эту инструкцию, особенно указания по технике безопасности, прежде чем Вы смонтируете станок, запустите его в эксплуатацию или будете проводить работы по техническому обслуживанию. Для достижения максимального срока службы и производительности Вашего станка тщательно следуйте, пожалуйста, нашим указаниям.

1. Гарантийные обязательства и правила техники безопасности

Компания JET стремится к тому, чтобы ее продукты отвечали высоким требованиям клиентов по качеству и стойкости.

JET гарантирует первому владельцу, что каждый продукт не имеет дефектов материалов и дефектов обработки, а именно:

2 ГОДА ГАРАНТИИ JUM-1464DRO В СООТВЕТСТВИИ С НИЖЕПЕРЕЧИСЛЕННЫМИ ГАРАНТИЙНЫМИ ОБЯЗАТЕЛЬСТВАМИ.

- 1. Гарантийный срок 2 (два) года со дня продажи. Днем продажи является дата оформления товарно-транспортных документов и/или дата заполнения Гарантийного талона.
- 2. Гарантийный, а так же не гарантийный и послегарантийный ремонт производится только в сервисных центрах, указанных в гарантийном талоне, или авторизованных сервисных центрах.
- 3. После полной выработки ресурса оборудования рекомендуется сдать его в сервис-центр для последующей утилизации.
- 4. Гарантия распространяется только на производственные дефекты, выявленные в процессе эксплуатации оборудования в период гарантийного срока.
- 5. В гарантийный ремонт принимается оборудование при обязательном наличии правильно оформленных документов: гарантийного талона, согласованного с сервис-центром образца с указанием заводского номера, даты продажи, штампом торговой организации и подписью покупателя, а так же при наличии кассового чека, свидетельствующего о покупке.
- 6. Гарантия не распространяется на:
- сменные принадлежности (аксессуары), например: сверла, буры; сверлильные и токарные патроны всех типов и кулачки и цанги к ним; подошвы шлифовальных машин и т.п. (см. список

сменных принадлежностей (аксессуаров) JUM);

- быстроизнашиваемые детали, например: угольные щетки, приводные ремни, защитные кожухи, направляющие и подающие резиновые ролики, подшипники, зубчатые ремни и колеса и прочее (см. инструкцию по оценке гарантийности и ремонта оборудования JUM). Замена их является платной услугой;
- оборудование JUM со стертым полностью или частично заводским номером;
- шнуры питания, в случае поврежденной изоляции замена шнура питания обязательна.
- 7. Гарантийный ремонт не осуществляется в следующих случаях:
- при использовании оборудования не по назначению, указанному в инструкции по эксплуатации;
- при механических повреждениях оборудования;
- при возникновении недостатков из-за действий третьих лиц, обстоятельств непреодолимой силы, а так же неблагоприятных атмосферных или иных внешних воздействий на оборудование, таких как дождь, снег повышенная влажность, нагрев, агрессивные среды и др.;
- при естественном износе оборудования (полная выработка ресурса, сильное внутреннее или внешнее загрязнение, ржавчина);
- при возникновении повреждений из-за несоблюдения предусмотренных инструкцией условий эксплуатации (см. «Правила техники безопасности»);
- при порче оборудования из-за скачков напряжения в электросети;
- при попадании в оборудование посторонних предметов, например песка, камней, насекомых, материалов или веществ, не являющихся отходами, сопровождающими применение по назначению;
- при повреждения оборудования вследствие несоблюдения правил хранения, указанных в инструкции;
- после попыток самостоятельного вскрытия, ремонта, внесения конструктивных изменений, несоблюдения правил смазки оборудования;
- при повреждении оборудования из-за небрежной транспортировки. Оборудование должно перевозиться в собранном виде в упаковке, предотвращающей механические или иные повреждения и защищающей от неблагоприятного воздействия окружающей среды.
- 8. Гарантийный ремонт частично или полностью разобранного оборудования исключен.
- 9. Профилактическое обслуживание оборудования, например: чистка, промывка, смазка, в период гарантийного срока является платной услугой.
- 10. Настройка, регулировка, наладка и техническое обслуживание оборудования осуществляются покупателем.
- 11. По окончании срока службы рекомендуется обратиться в сервисный центр для

профилактического осмотра оборудования.

Эта гарантия не распространяется на те дефекты, которые вызваны прямыми или косвенными нарушениями, невнимательностью, случайными повреждениями, неквалифицированным ремонтом, недостаточным техническим обслуживанием, а также естественным износом.

Гарантия JUM начинается с даты продажи первому покупателю.

JUM возвращает отремонтированный продукт или производит его замену бесплатно. Если будет установлено, что дефект отсутствует или его причины не входят в объем гарантии JUM, то клиент сам несет расходы за хранение и обратную пересылку продукта.

JUM оставляет за собой право на изменение деталей и принадлежностей, если это будет признано целесообразным.

Правила техники безопасности

- Прочитайте и постарайтесь понять все руководство с инструкциями, прежде чем работать со станком.
- 2. Всегда надевайте защитные очки/лицевую маску при использовании этого станка.
- 3. Убедитесь в том, что станок должным образом заземлен.
- 4. Прежде чем работать на станке, снимите галстук, кольца, очки, а также прочие украшения и закатайте рукава выше локтей. Снимите свободную одежду и спрячьте длинные волосы. НЕ НАДЕВАЙТЕ перчатки.
- 5. Содержите пол вокруг станка в чистоте и свободным от мусора, масла и смазки.
- 6. Всегда держите защитные ограждения на месте, когда станок работает. Если они были сняты для целей обслуживания, используйте чрезвычайную осторожность и поставьте их на место, как только это будет возможно.
- 7. НЕ наклоняйтесь. Всегда сохраняйте равновесие так, чтобы не упасть и не наклоняться над лезвиями или другими движущимися деталями.
- 8. Все регулировки и обслуживание станка проводите тогда, когда он отключен от источника питания.
- 9. Используйте подходящий инструмент. Не применяйте инструмент или приспособление для работы, для которой они не предназначены.
- 10. Убедитесь, что выключатель мотора находится в положении ВЫКЛЮЧЕН, прежде чем подключать станок к источнику питания.
- 11. Держите посетителей на безопасном расстоянии от рабочей зоны.
- 12. Никогда не пытайтесь выполнить операцию или наладку, если процедура вам непонятна.
- 13. Держите пальцы подальше от движущихся деталей или режущих инструментов во время работы.

- 14. Не пытайтесь отрегулировать или удалить инструменты во время работы.
- 15. Невыполнение всех этих правил может привести к серьезному увечью.

2. Рабочая среда станка

- 2.1 Фрезерный станок спроектирован для работы на участке со следующими характеристиками:
 - Высота над уровнем моря не более 1000 м.
 - Диапазон температуры окружающей среды в пределах 5°C 40 °C.
 - Относительная влажность воздуха не более 50% при \pm 40 и 90% при \pm 20.
 - Диапазон температуры транспортировки в пределах -25°C +55 °C
 - Освещение рабочего пространства не должно быть ниже, чем 500 люкс.
- 2.2 Не используйте станок в среде электрических отходов, вспышек, металлических обломков, газа и пара, которые могут повредить изоляцию.
- 2.3 Не используйте станок в среде с ударами и вибрациями.

3. Назначение и конструкция станка

Универсальный фрезерный станок с поворотной головой предназначена для фрезерования металлических заготовок.

Примечание: не обрабатывайте легковоспламеняющийся и взрывоопасный металл, например, чистый алюминий, магний и т.д.

Универсальный фрезерный станок состоит из универсальной фрезерной головы, основания, колоны, колена, стола, поворотной станины, главного привода, блока подач, хобота, системы подачи СОЖ, смазки, электрической системы и т.д.

Конструкция станка: (Рис.1)

- 3.1 Колонна крепится на основании с помощью винтов.
- 3.2 Колено находится перед колонной и соединяется с ней через прямоугольные направляющие, которые могут подниматься и опускаться вдоль вертикальной направляющей.
- 3.3 Поворотная станина соединяется с коленом через прямоугольные направляющие. Стол соединяется с салазками через направляющие типа "ласточкин хвост". Рабочий стол и салазки перемещаются посредством ходового винта и гайки.
- 3.4 Главный привод приводится в действие устройством зубчатой передачи.

- 3.5 Коробка подач крепится в нижней правой части поворотной станины и приводится в движение непосредственно двигателем.
- 3.6 Система подачи СОЖ состоит из насоса подачи СОЖ, трубки, бака в основании и т.д.
- 3.7 Система смазки состоит из иммерсионного масляного устройства с методом разбрызгивания, насоса подачи смазки, ручного насоса и т.д.
- 3.8 Панель управления находится слева от колонны для удобства управления.

Рабочий стол перемещается вручную или автоматически, питание узла подачи обеспечено только одним двигателем. Коробка подач имеет двадцать четыре ступени скоростей и три передачи ускоренного хода. Главный привод приводит в действие механизм шестерней, обеспечивает высокую эффективность, высокий крутящий момент, расширяет диапазон изменения скорости, вследствие чего расширяется диапазон параметров обработки.

3.9 Поворот стола: ослабьте четыре винта с двух сторон поворотной станины, затем, приложив усилие, поверните стол в нужное положение.

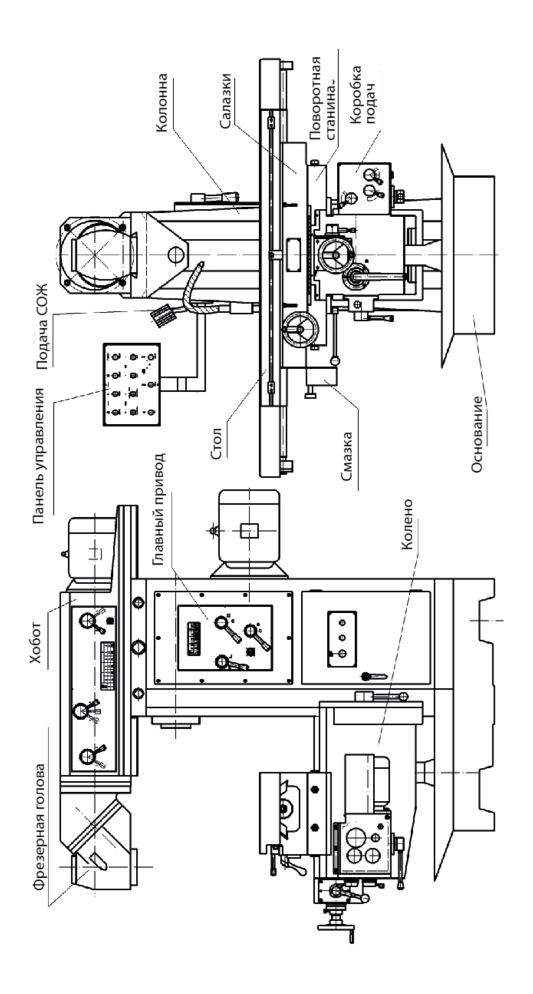


Рис.1

4. Основные технические характеристики станка					
No.	Наименование	Характеристики			
1	Конус шпинделя	ISO50			
2	Расстояние между осью шпинделя и поверхностью стола.	0-400 мм			
3	Расстояние между осью шпинделя и хоботом	175 мм			
4	Частота вращения шпинделя	58 - 1800 об/мин (горизонтальный шпиндель); 60 - 1750 об/мин (вертикальный шпиндель)			
5	Размеры стола	1600 мм×360 мм			
6	Расстояние между торцом шпинделя и поверхностью стола.	400 мм			
7	Перемещение стола (X, Y, Z)	1300 мм (продольное) 280 мм (поперечное) 290 мм (поперечное) 400 мм (вертикальное)			
8	Угол поворота стола	±35°			
9	Продольная, поперечная, вертикальная скорость автоматической подачи стола	22 - 420 мм/мин (X) 22 - 393 мм/мин (Y) 10 - 168 мм/мин (Y) ускор. подача 1290 мм/мин (X) ускор. подача 1205 мм/мин (Y) ускор. подача 513 мм/мин (Z)			
10	Ход хобота	500 мм			
11	Мощность главного двигателя	4 кВт			
12	Габаритные размеры (Д×Ш×В)	1900 мм×1720 мм×1950 мм			
13	Bec	2300 кг			
Технические характеристики могут быть изменены без предварительного уведомления.					

5. Передаточные механизмы станка (Рис.2)

5.1 Универсальная фрезерная голова

Шпиндель приводной системы универсальной фрезерной головы установлен в хоботе и приводится в движение фланцевым двигателем.

5.2 Система привода шпинделя

Система привода шпинделя установлена в колонне и управляется фланцевым двигателем. Двигатель соединяется с приводным валом и передает усилие шпинделю через шестерни и передвижные шестерни.

Главная передача: главный двигатель→приводной вал→шестерни и передвижные шестерни→шпиндель.

5.3 Система привода подач стола

Подача производится ручным или автоматическим управлением, для осуществления продольной и поперечной подачи стола усилие передается ходовому винту и гайке.

5.4 Колено

Колено может вертикально подниматься и опускаться посредством двух конических зубчатых колес. Для осуществления вертикальной подачи стола, усилие передается ходовому винту и гайке.

5.5 Хобот

Ослабьте фиксирующую ручку справа от хобота, поверните вал-шестерню вправо от хобота для регулировки хобота в нужное положение, затем затяните фиксирующую ручку.

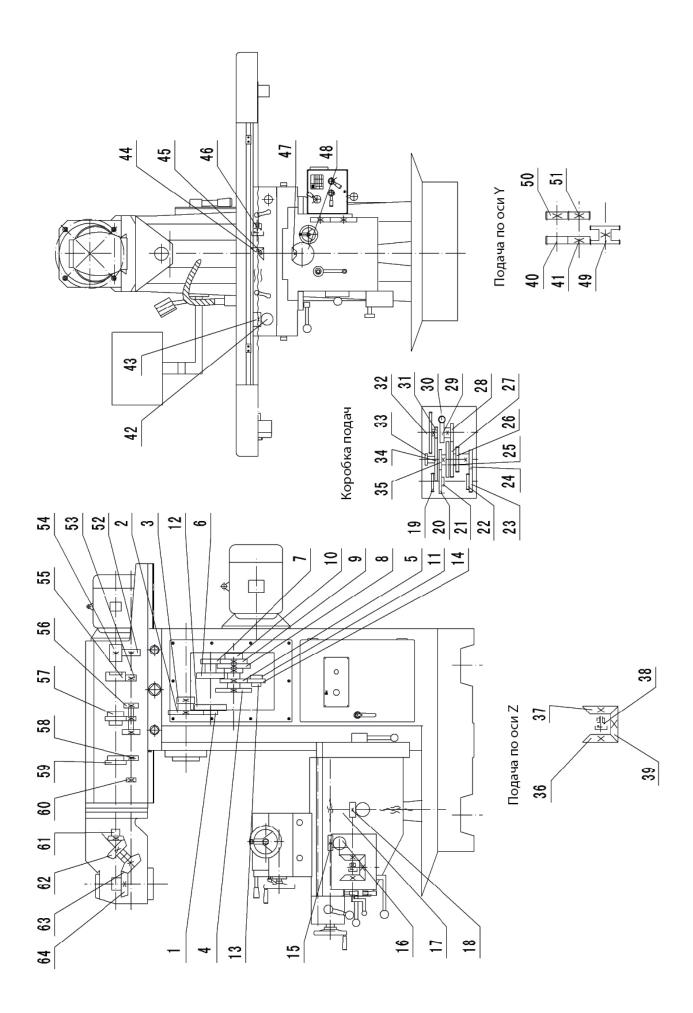


Рис. 2

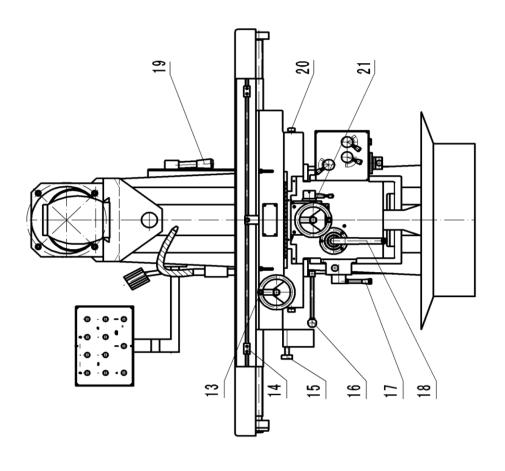
6. Эксплуатация станка

- 6.1 Внимательно прочитайте инструкцию перед эксплуатацией станка, затем ознакомьтесь с конструкцией станка, функцией каждого рычага, кнопками на панели управления, системой подачи СОЖ, смазочной системой, электрической системой и т.д. (Рис. 3)
- 6.2 Перед запуском станка проверьте, в норме ли каждое устройство блокировки, правильно и надежно ли заземлен провод.
- 6.3 Включите выключатель питания, проверьте свободное переключение и надежность работы электрического выключателя. Панель управления расположена слева от колонны. У кнопок на панели управления есть графические символы для удобства работы. Кнопка толчковых перемещений находится на правой стороне колонны, таким образом, удобно изменять частоту вращения шпинделя.
 - 6.4 Изменение частоты вращения шпинделя.

Сначала нажмите толчковую кнопку "Т" на правой стороне колонны, затем отрегулируйте три рукоятки (19) в заданные позиции в соответствии с пояснениями таблицы скоростей.

Изменение частоты вращения шпинделя универсальной фрезерной головы: отрегулируйте три рукоятки (7) в заданные позиции согласно пояснениям таблицы скоростей.

- 6.5 Сначала запустите двигатель коробки подач, затем отрегулируйте рукоятку (1) в положение "STOP", установите рукоятки (2) в нужные значения скорости. Стол начнет перемещаться на ускоренной подаче, когда рукоятка (1) будет находиться в положении "RAPID" (ускоренный ход).
 - 6.6 Продольная подача стола.
- 6.6.1 Продольная автоматическая подача стола: сначала ослабьте фиксирующую рукоятку (4) и установите рукоятку (5) в положение ВЛЕВО (LEFT), ВПРАВО (RIGHT) или НЕЙТРАЛЬНОЕ (NEUTRAL), что обеспечит автоматическую продольную подачу.
- 6.6.2 Продольная ручная подача стола: Сначала ослабьте фиксирующую рукоятку (4) и установите рукоятку (5) в положение РУЧНАЯ (MANUAL), затем вращайте маховик (13) для обеспечения ручной подачи стола.
 - 6.7 Поперечная подача стола
- 6.7.1 Поперечная ручная подача стола: сначала ослабьте фиксирующую рукоятку (16), установите рукоятку (3) в "НЕЙТРАЛЬНОЕ" (NEUTRAL) положение, затем вращайте маховик (21) для обеспечения поперечной ручной подачи стола.
- 6.7.2 Поперечная автоматическая подача стола: сначала ослабьте фиксирующую рукоятку (16). Перед тем как регулировать рукоятку (3) вверх или вниз, на конце рукоятки (3) должна


выскочить кнопка, что обеспечит поперечную автоматическую подачу.

- 6.8 Вертикальная подача стола.
- 6.8.1 Вертикальная ручная подача стола: сначала ослабьте фиксирующую рукоятку (12), установите рукоятку (17) в "НЕЙТРАЛЬНОЕ" (NEUTRAL) положение, затем вращайте рукоятку (18) для обеспечения вертикальной ручной подачи стола.
- 6.8.2 Вертикальная автоматическая подача стола: сначала ослабьте фиксирующую рукоятку (12), переместите рукоятку (17) вверх или вниз, что обеспечит вертикальную автоматическую подачу.

ВНИМАНИЕ: нужно снять изогнутую рукоятку (18), если она не используется.

6.9 Поворотный стол

Сначала ослабьте фиксирующие винты (20) с двух сторон поворотной станины, затем, приложив усилие, поверните стол в нужное положение, затяните фиксирующие винты (20).

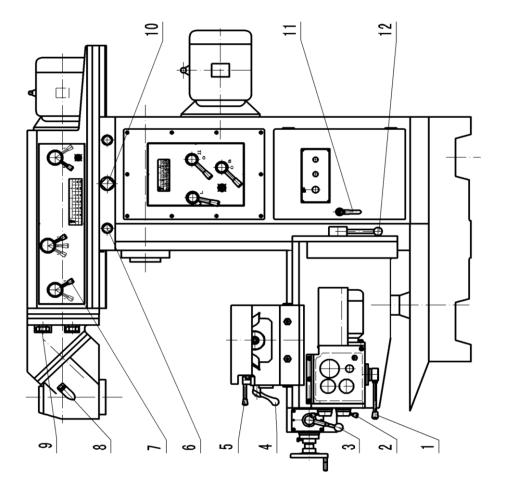


Рис. 3

7. Регулировка станка

7.1 Регулировка люфта подшипников шпинделя. (Рис.4)

Люфт подшипников шпинделя был отрегулирован до отгрузки станка с завода. Долговременное использование станка вызывает естественный износ подшипников шпинделя и увеличение люфта. Попросите специалиста отрегулировать его.

Сначала снимите крышку ① с правой стороны колонны. Прежде всего, отогните зубья плоской стопорной шайбы под круглой гайкой, отрегулируйте круглую гайку (2), сделайте надлежащий люфт шпинделя, затем загните зубья стопорной шайбы, установите крышку (1).

- 7.2 Регулировка продольного и поперечного клина стола
- 7.2.1 Регулировка продольного клина: сначала ослабьте винт ① малого конца клина, затем отрегулируйте винт ② большего конца клина в правильное положение, чтобы ощущалось небольшое сопротивление при перемещении стола, затяните винт ① должным образом. (Рис. 5.a).
- 7.2.2 Регулировка поперечного клина: снимите защитную планку ②, ослабьте винт ① на одном конце клина, отрегулируйте винт ③ на другом конце клина в правильное положение, чтобы ощущалось небольшое сопротивление при перемещении стола, установите защитную планку ②. (Рис. 5.b)
 - 7.2.3 Регулировка люфта между коленом и вертикальной направляющей.

Снимите защитную планку ③, ослабьте винт ① на меньшем конце клина, затем отрегулируйте винт ② на большем конце клина в правильное положение, чтобы ощущалось небольшое сопротивление при перемещении стола, установите защитную планку ③. (Рис. 5.c)

7.2.4 Регулировка люфта между ходовым винтом продольного перемещения и гайкой. (Рис. 6)

Слишком большой люфт между ходовым винтом и гайкой будет влиять на точность обработки. Сначала ослабьте фиксирующий винт, должным образом отрегулируйте регулировочный червяк, затяните фиксирующий винт.

7.2.5 Регулировка люфта между ходовым винтом поперечного перемещения и гайкой Непосредственно отрегулируйте круглую гайку под поворотной станиной, чтобы ощущалось небольшое сопротивление при перемещении стола вдоль прямоугольных направляющих.

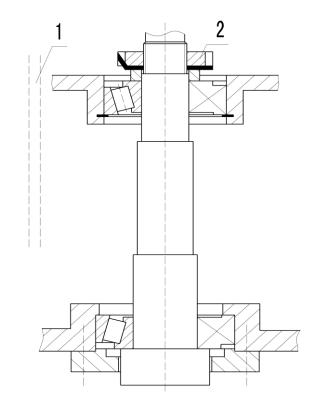


Рис. 4

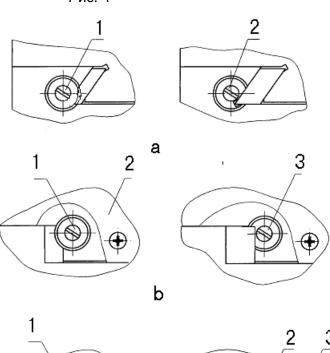
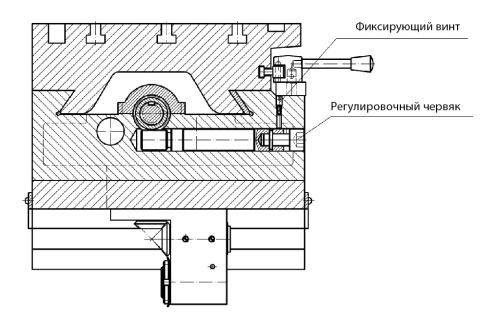



Рис. 5

С

Продольное перемещение

Рис. 6

8. Подача СОЖ и смазка станка

8.1 СОЖ поступает в сопло через трубку. Отрегулируйте сопло для распыления охлаждающей жидкости точно в области обработки и фрезы. Охлаждающая жидкость содержится в основании станка.

8.2 Система подачи СОЖ

Система подачи СОЖ состоит из насоса подачи СОЖ, бака в основании станка, гибкого и регулируемого сопла и т.д.

Клапан используется для управления потоком распыления СОЖ точно в область обработки. Охлаждающая жидкость содержится в основании станка.

MSDS (Сертификат безопасности материала)

Информация по технике безопасности

Наименование: JN-8 водорастворимая антикоррозийная смазочно-охлаждающая жидкость

Состав: безопасные примеси

Кожа: Нет

Глотание: Нет

Канцерогенность: Нет

Внешний вид и запах: полупрозрачная жидкость / без запаха.

Антикоррозионные свойства: окунание литых деталей из первоклассного серого чугуна, отсутствие следов коррозии 48 ч; гнутые заготовки – 8 ч.

Испытания антикоррозионных свойств: 55±2°С, чугун 48 ч; алюминий 4 ч.

Устранение пены: желательно

Значение РН: экстенсивная индикаторная бумага - 8.5

Поверхностное натяжение: <40 дин/см2

Значение РВ :>700

µ<0.083 Кожа: Нет

Noka. Hei

Глотание: Нет

Канцерогенность: Нет

Последствия воздействия: кожа - слабое раздражение.

Разъяснение канцерогенности: отсутствует.

Первая помощь: глаза - тщательно промойте. Кожа - смыть мылом и водой.

Глотание: если >1/2 литра (пинты), сразу же дать 1-2 стакана воды и

вызвать врача.

Вдыхание: при нормальной температуре испарения нет, но при высокой температуре

испаряется углеводород, после вдыхания вызвать врача.

Средства пожаротушения: Нет.

Использование и утилизация:

Разлив жидкости: если небольшое количество, засыпьте опилками и соберите лопаткой; если большое количество, предотвратите попадание жидкости в канализационные коллекторы, стоки, почву, затем утилизируйте пролитую жидкость с помощью утвержденного утилизирующего приспособления в любое утвержденное государством место утилизации отходов.

- 1. СОЖ нельзя самостоятельно сливать, она должна быть утилизирована и переработана в соответствие с правилами и постановлениями.
- 2. Испарение СОЖ, которое может повлиять на здоровье, может возникнуть при повышенной температуре инструментов или высокой скорости вращения шпинделя. Следует позаботиться о том, чтобы рабочее место хорошо проветривалось. Рекомендуется обеспечить рабочее место вентиляционным оборудованием.

8.2 Смазка.

В значительной степени срок службы станка зависит от правильной смазки.

8.2.1 Смазочное масло должно быть чистым без примесей кислот, воды или твердых частиц и

Т.Д.

8.2.2 Главные шестерни смазываются автоматическим устройством смазки. Реверсивный

циклоидный насос подачи смазки установлен в полости колонны, насос подачи смазки

включается при запуске главного двигателя. Смазочное масло распыляется на шестерни.

Коробка скоростей смазывается путем иммерсионного смазывания разбрызгиванием.

Для надлежащей смазки станка в первое время масляный бак необходимо регулярно

чистить один раз в 3 месяца, в дальнейшем один раз в полгода.

8.2.3 Добавьте масло, когда поверхность масла опустится ниже шкалы масла.

8.2.4 Смазывайте ходовые направляющие салазки-стол, направляющие винты,

салазки-колено, направляющие колено-колонна и проч. четыре раза в смену.

8.2.5 Крышка подшипника механизма зажима серьги оснащена автоматической капельной

системой смазки, нужно часто добавлять и чистить масло.

Другие узлы, которые нуждаются в смазке, имеют встроенный масляный стакан, каждую

смену добавляйте масло не менее 4-х раз.

MSDS (Сертификат безопасности материала)

Информация по технике безопасности

Наименование: смазочное масло N.46

Данные по опасности для здоровья

Состав: безопасные примеси

Относительная плотность: <1

Испарение: НЕТ

Кожа: НЕТ

Глотание: НЕТ

Канцерогенность: НЕТ

Последствия воздействия: кожа - слабое раздражение.

Разъяснение канцерогенности: отсутствует.

Первая помощь: глаза - тщательно промойте; кожа - смыть мылом и водой;

глотание: если >1/2 литра (пинты), сразу же дать 1-2 стакана воды и

вызвать врача. Не вызывайте рвоту/ ничего не давайте есть. При потере

сознания, вызвать врача.

Информация по пожаро- и взрывоопасности

Температура возгорания: 180°C

Средства пожаротушения: СО₂, порошковый огнетушитель и водораспылитель.

19

ОПАСНОСТЬ: ПРЕДОТВРАТИТЕ СТОК ИЛИ РАСТВОРЕНИЕ ЖИДКОСТИ В КАНАЛИЗАЦИОННЫХ КОЛЛЕКТОРАХ, ВОДОСТОКАХ ИЛИ ПИТЬЕВОМ ВОДОСНАБЖЕНИИ ПРИ ПОЖАРОТУШЕНИИ.

Физические/химические свойства

Растворимость в воде: Незначительная

Внешний вид и запах: Темно-янтарная жидкость без запаха.

Данные химической активности

Значение стабильности: ДА

Условия неустойчивости: Крайне высокая температура.

Материалы, которых следует избегать: Сильные окислители, горючий материал.

Значение опасной полимеризации: НЕТ

Использование и утилизация

Разлив жидкости: во-первых, отключите источник потока, если небольшое количество, засыпьте опилками и соберите лопаткой; если большое количество, предотвратите попадание жидкости в канализационные коллекторы, стоки, почву, затем утилизируйте пролитую жидкость с помощью утвержденного утилизирующего приспособления в любое утвержденное государством место утилизации отходов.

Примечание: Отработанное масло должно быть утилизировано и переработано в соответствии с местными правилами и постановлениями.

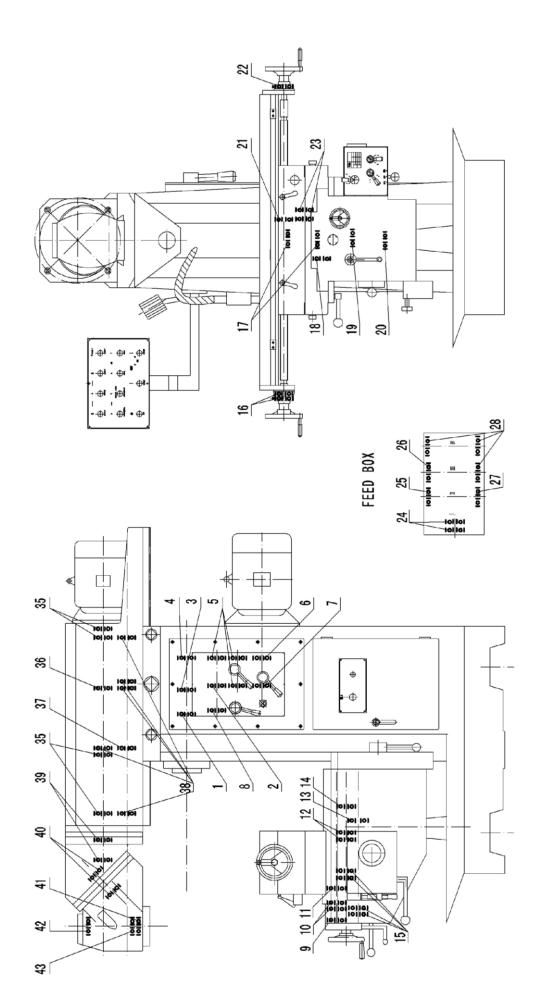


Рис.7

9. Транспортировка, установка и пробный запуск

9.1 Транспортировка

Диапазон температуры транспортировки и хранения станка составляет -25 °C - +55 °C.

Загружайте или выгружайте станок в соответствие с ярлыками на упаковочной коробке. Любые удары или вибрация запрещены. Осторожно откройте коробку, иначе она поцарапает краску на поверхности станка. Открыв коробку, проверьте все принадлежности согласно упаковочному листу. Если что-то не соответствует или повреждено, своевременно сообщите дилеру или производителю для разрешения вопросов. Переместите станок с помощью погрузчика. Установите стальной проволочный трос, как показано на Рис. 7 для транспортировки станка краном и поместите какие-либо подкладки или мягкую ткань между поверхностью станка и стальным проволочный тросом. Во время транспортировки при необходимости обратитесь за помощью.

Внимание:

- 1. Стальной проволочный трос не должен касаться поверхности станка, каждой рукоятки, ручки и маховика. Поместите деревянный брусок или мягкую ткань в пространство между стальным проволочным тросом и краем станка, чтобы не повредить краску.
- 2. Перед транспортировкой станка краном переместите рабочий стол на передний конец колена, пусть два конца стола на колене будут одинаковой длины, одновременно затяните продольные и поперечные фиксирующие ручки.

9.2 Установка

Чтобы обеспечить стабильную работу и сохранить высокую точность обработки, станок должен быть установлен на бетонном фундаменте, который должен быть сделан в соответствии с Рис. 9. Фундамент должен располагаться на твердой почве. Поставьте станок на фундамент после того, как он полностью высохнет, затем закрепите болтами к бетону, тщательно отрегулируйте, убедитесь что его выравнивание не превышает допустимые пределы 0.04/1000 мм в поперечном и продольном направлениях после затягивания болтов.

- 9.3 Пробный запуск
- 9.3.1 Перед пробным запуском тщательно снимите антикоррозийную смазку с каждой детали станка, затем нанесите тонкий слой смазки на внешнюю поверхность.
- 9.3.2 Ослабьте фиксирующую рукоятку трех направлений (X, Y, Z) станка перед пробным

запуском.

- 9.3.3 Залейте смазочное масло в коробку скоростей и другие нужные смазочные позиции, затем проведите общую проверку.
- 9.3.4 Проверьте, чтобы каждый ручной маховик и рукоятка станка свободно и надежно поворачивались.

Сначала запустите станок на холостом ходу на самой низкой скорости, пусть поработает более 30 минут, затем постепенно увеличивайте скорость и проверяйте, чтобы ручные маховики и рукоятки свободно и надежно поворачивались.

Внимание: Соблюдайте осторожность при загрузке или выгрузке станка во время транспортировки.

Рис. 8

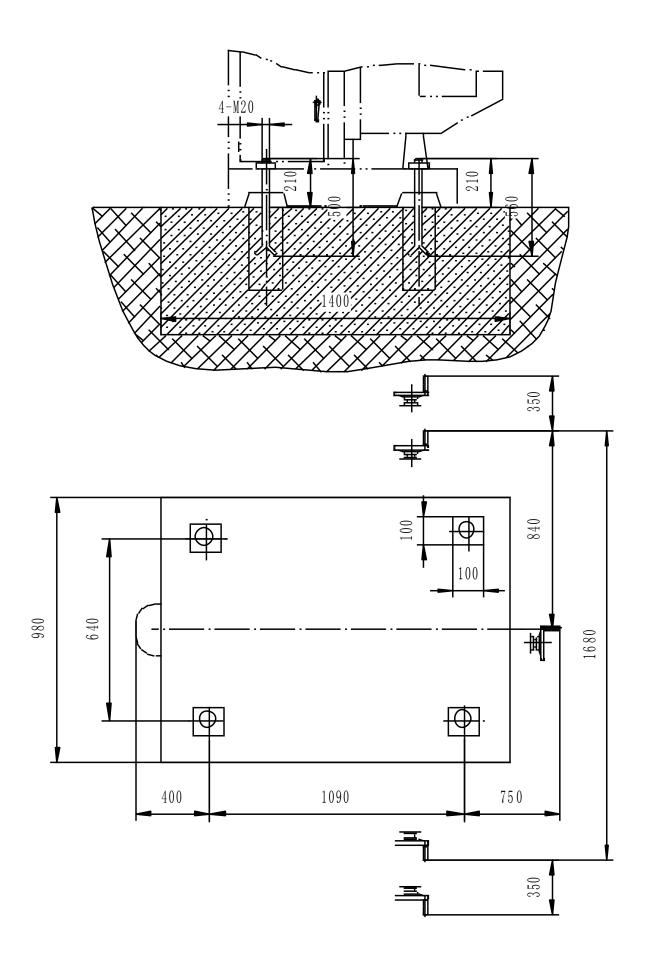


Рис. 9

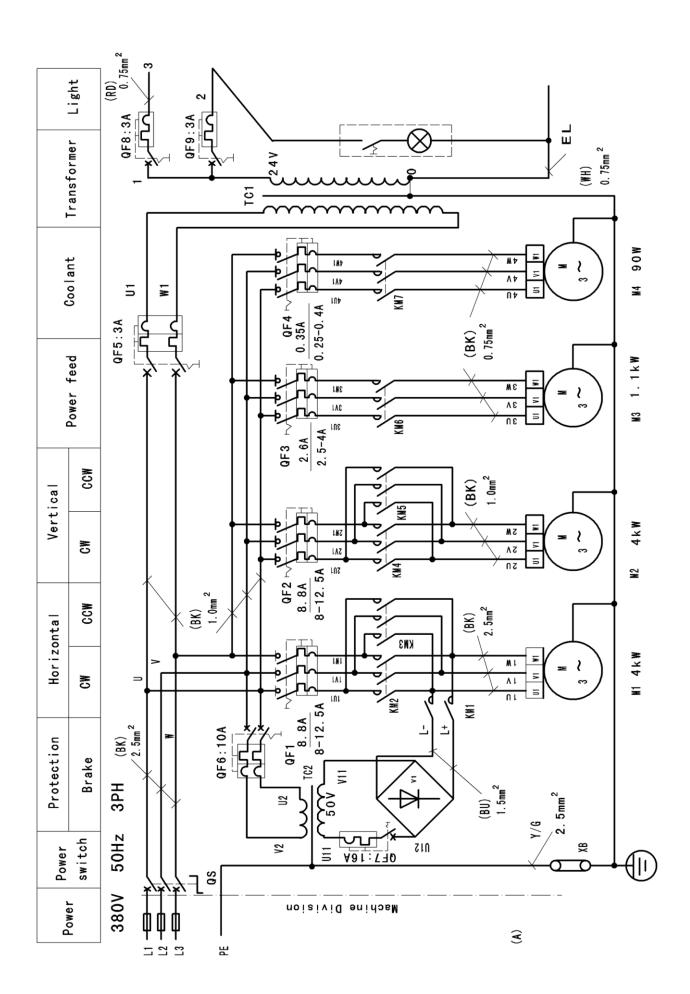
10. Техническое обслуживание станка

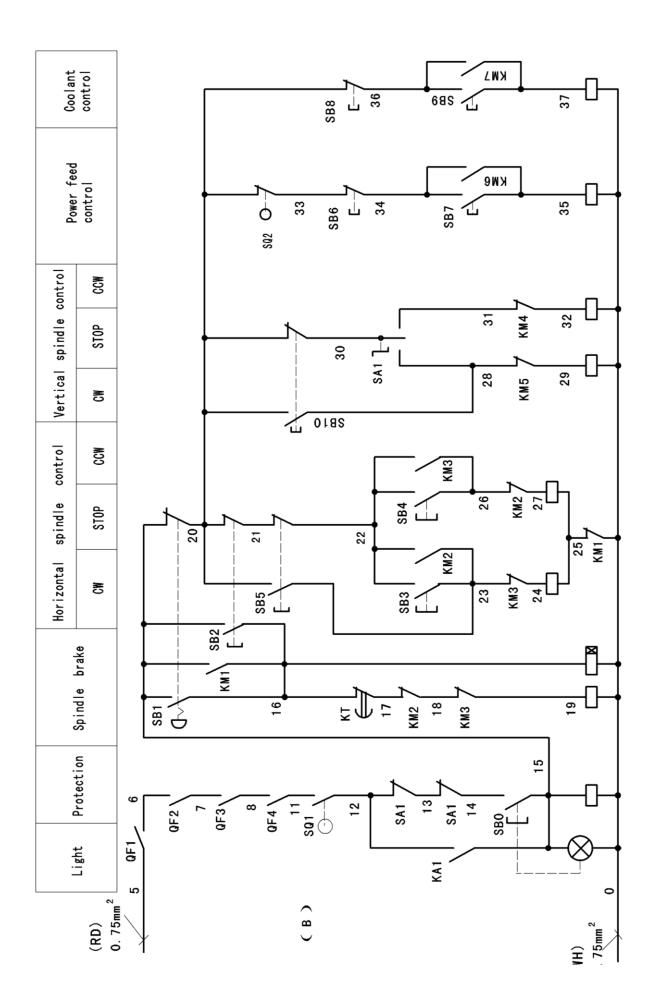
- 10.1 Текущее техническое обслуживание станка очень важно для точности и функционирования станка.
 - 10.2 Регулярно добавляйте смазочное масло в масляный бак и смазочный узел.
 - 10.3 Часто меняйте позицию обработки заготовки на столе.
 - 10.4 Перед началом работы заготовка и фреза должны быть затянуты.

11. Распространённые неисправности и их устранение

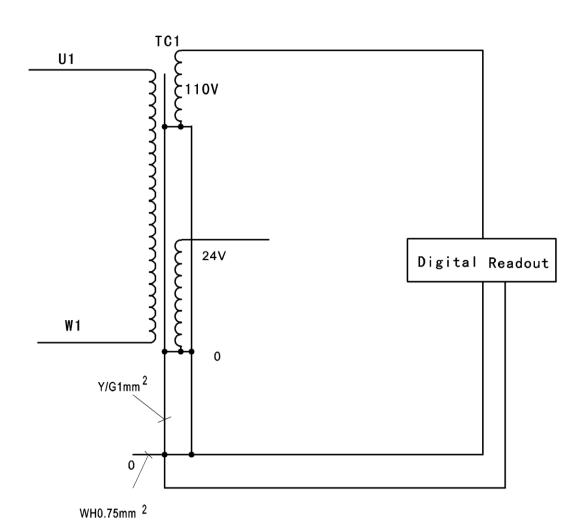
- 11.1 Для устранения большого зазора, когда биение шпинделя будет слишком большим, регулируйте стопорную круглую гайку.
- 11.2 Если во время подъёма или опускания рабочего стола возникает посторонний звук, проверьте, не ослаб ли клин, достаточно ли масла. Отрегулируйте клин и добавьте масло.
- 11.3 При возникновении постороннего звука в коробке скоростей проверьте, на месте ли рукоятки изменения скоростей, достаточно ли масла, не поврежден ли подвижной вильчатый захват. Отрегулируйте положение рукояток, добавьте масло или замените подвижной вильчатый захват.

Внимание:


- 1. Отключите источник питания перед ремонтом станка.
- 2. Ремонт станка должен производить только квалифицированный специалист.


12. Электрическая система станка

Смотрите схему подключения и перечень электрооборудования.


- 12.1 Источник питания: 380B±10%, АС (переменный ток) 50±1Гц, 3 фазы. Включите главный выключатель после проверки источника питания.
- 12.2 У станка есть много функций защиты, такие как защитный тормоз шпинделя, аварийная остановка и т.д..
- 12.3 Нажмите кнопку аварийного отключения на панели управления сразу же, как произошла неисправность, затем поверните кнопку по часовой стрелке после устранения неисправности.
 - 12.4 Ремонт станка должен производить только квалифицированный специалист.

Примечание: Не ремонтируйте электросистему самостоятельно.

13. Регулировка универсальной фрезерной головы

13.1 Вращая голову, используйте дополнительный позиционирующий круглый стержень. (Рис. 10)

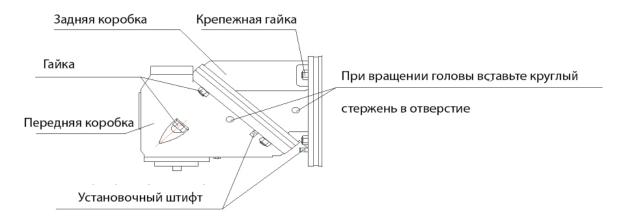


Рис.10

Вытяните установочный штифт прежде, чем повернуть фрезерную голову, затем ослабьте крепежную гайку на 1-2 витка, поверните фрезерную голову в требуемое положение, с силой протолкните и вставьте установочный штифт, затяните главную крепежную гайку, таким образом, оператор может быстро и точно позиционировать головку.

Внимание: Не раскручивайте гайку полностью, иначе фрезерная голова упадет на станок.

Опасно поворачивать её при одновременно разжатых крепежных гайках в верхней и нижней части головы.

13.2 Когда передняя и задняя коробки фрезерной головы находятся под углом 0°, шпиндель находится в горизонтальном положении. (Рис. 11)

Попробуйте установить фрезу во фрезерный зажим при горизонтальном фрезеровании.

- 13.3 Шпиндель будет находиться в вертикальном положении, когда передняя коробка повернута под углом 180°.
- 13.4 Для расширения диапазона обработки оператор может поднять шпиндель, который находится в горизонтальном положении, до требуемого положения, повернув заднюю коробку под углом 180°. Передняя и задняя коробки должны точно позиционироваться с помощью конического штифта для расположения фрезерной головы в горизонтальном или вертикальном положении, чтобы обеспечить вертикальный и горизонтальный уровень точности между шпинделем и столом. Коническому штифту соответствует единственное специальное установочное отверстие, не вдавливайте установочный штифт в специальное установочное отверстие, пока он находится в этом положении, чтобы избежать повреждения соединительной планки.



Рис. 11

13.5 Наклон шпинделя вправо и влево (Рис.12)

Задняя коробка фрезерной головы поворачивается по часовой и против часовой стрелки

под углом 90°, что обеспечивает работу шпинделя в различных положениях, таким образом, расширяется диапазон продольный обработки.

13.6 Вращение шпинделя в горизонтальной плоскости. (Рис. 13)

Шпиндель с держателем фрезерной оправки может вращаться в горизонтальной плоскости для улучшения жесткости фрезерной оправки. Для её регулировки поворачивайте переднюю и заднюю коробку в разные направления. Угол шпинделя выбирается путем регулировки передней и задней коробки. Регулируемый угол рассчитывается или проверяется по таблице, приведенной ниже.

Формула для вычисления:

$$cosβ=2cosθ-1$$
 $tgα= \sqrt{2}/2 tg$

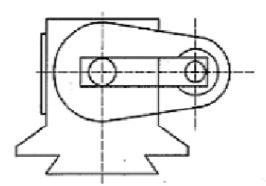
 θ — Угол между осью шпинделя и $\frac{\beta}{2}$ поперечным перемещением стола.

β – Угол передней коробки.

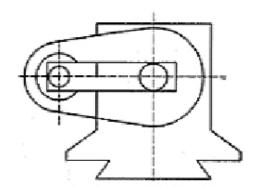
α – Угол задней коробки.

Пример:

1. Обработка под углом - 45° вращение вправо


Задняя коробка α 24° 28′ 11″ (против часовой стрелки)

Передняя коробка β 65° 31' 49" (по часовой стрелке)


2. Обработка под углом - 30° вращение влево

Задняя коробка α 15° 32′ 32″ (по часовой стрелке)

Передняя коробка $\beta 42^{\circ} 56' 29''$ (против часовой стрелки)

Наклон горизонтального шпинделя влево. Задняя коробка 90° (вращ. вправо). Передняя коробка 0°

Наклон горизонтального шпинделя вправо. Задняя коробка 90° (вращ. влево). Передняя коробка 0°

Рис. 12

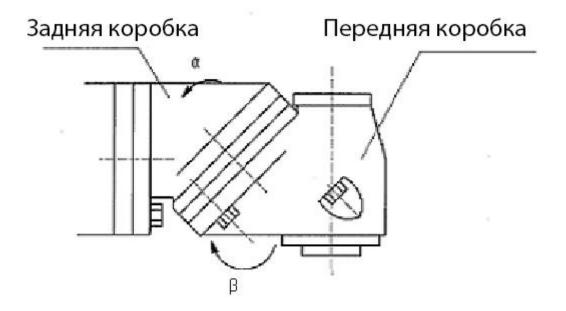


Рис.13

Таблица углов поворота

Угол шпинделя Ө	Угол передней коробки β	Угол задней коробки α	Угол шпинделя θ	Угол передней коробки β	Угол задней коробки α
1°	1°24'51"	0°30'00"	24°	34°11'56"	12°18'20"
2°	2°49'43"	1 00°00'"	25°	35°38'52"	12°48'31"
3°	4°14'35"	1°30'02"	26°	37°05'58"	13°20'53"
4°	5°39'29"	2°00'05"	27°	38°33'17"	13°53'28"
5°	7°04'24"	2°30'09"	28°	40°00'48"	14°26'15"
6°	8°29'21"	3°00'15"	29°	41°28'32"	14°59'17"
7°	9°54'20"	3°30'24"	30°	42°56'29"	15°32'32"
8°	11°19'22"	4°00'35"	31°	44°24'41"	16°06'02"
9°	12°44'28"	4°30'50"	32°	45°53'07"	16°39'48"
10°	14°09'37"	5°01'09"	33°	47°21'50"	17°13'49"
11°	15°35'50"	5°31'32"	34°	48°50'48"	17°48'08"
12°	17°00'08"	6°01'59"	35°	50°20'04"	18°22'44"

13°	18°25'28"	6°32'32"	36°	51°49'38"	18°57'38"
14°	19°50'56"	7°03'10"	37°	53°19'31"	19°32'52"
15°	21°16'29"	7°33'54"	38°	54°49'44"	20°08'27"
16°	22°42'08"	8°04'45"	39°	56°20'17"	20°44'22"
17°	24°07'54"	8°35'42"	40°	57°51'12"	21°20'39"
18°	25°33'46"	9°06'47"	41°	59°22'30"	21°57'20"
19°	26°59'46"	9°38'00"	42°	60°54'10"	22°34'23"
20°	28°25'54"	10°09'21"	43°	62°54'10"	23°11'52"
21°	29°52'11"	10°40'51"	44°	63°58'50"	23°49'48"
22°	31°18'36"	11°12'31"	45°	65°31'49"	24°28'11"
23°	32°45'12"	11°44'20"	46°	67°05'17"	25°07'03"

Угол шпинделя Ө	Угол передней коробки β	Угол задней коробки α	Угол шпинделя Ө	Угол передней коробки β	Угол задней коробки α
47°	68°39'15"	25°46'24"	69°	106°27'18"	43°24'55"
48°	70°13'44"	26°26'17"	70°	108°25'08"	44°26'37"
49°	71°48'47"	27°06'42"	71°	110°25'04"	45°30'13"
50°	73°24'24"	27°47'42"	72°	112°27'20"	46°35'50"
51°	75°00'38"	28°28'17"	73°	114°32'08"	47°43'41"
52°	76°37'30"	29°11'30"	74°	116°39'43"	48°53'57"
53°	78°15'02"	29°54'22"	75°	118°30'23"	50°05'52"
54°	79°53'17"	30°37'56"	76°	121°04'29"	51°22'41"
55°	81°32'17"	31°22'13"	77°	123°22'25"	52°41'47"
56°	83°12'04"	32°07'16"	78°	125°44'42"	54°04'30"
57°	84°52'40"	32°53'06"	79°	128°44'53"	55°31'17"
58°	86°34'10"	33°39'47"	80°	130°44'45"	57°02'43"

59°	88°16'35"	34°27'22"	81°	133°24'12"	58°39'30"
60°	90°	35°15'51.8"	82°	136°11'28"	60°22'33"
61°	91°44'28"	36°05'21"	83°	139°08'09"	62°13'04"
62°	93°30'02"	36°55'54"	84°	142°16'26"	64°12'40"
63°	95°17'47"	37°47'33"	85°	145°39'30"	66°23'44"
64°	97°04'48"	38°40'21"	86°	149°22'17"	68°49'50"
65°	98°54'11"	39°34'25"	87°	153°33'02"	71°36'58"
66°	100°45'01"	40°29'49"	88°	158°27'58"	74°56'51"
67°	102°07'23"	41°26'38"	89°	164°49'02"	79°49'34"
68°	104°31'26"	42°24'57"	90°	180°	90°

14. Сертификат точности

No.	Объект испытания	Допустимое отклонение	Измерен ие
	Прямолинейность движения колена по вертикали	А: поперечное 0.05/300	
1		В: продольное 0.05/300	
	Перпендикулярность вертикальной	А: поперечное 0.05/300 a≤90°	
2	направляющей относительно поверхности стола.	В: продольное 0.05/300	
3	Плоскостность рабочего стола	0.04/500	
4	Параллельность перемещения стола относительно поверхности стола	А: поперечное 0.05/300	
4		В: продольное 0.05/300	
5	Осевое биение шпинделя	0.02	
	Биение конуса шпинделя	А: вблизи торца шпинделя. 0.02	
6	виение конуса шпинделя	0.02	
7	Параллельность оси шпинделя относительно поверхности рабочего стола.	0.05/300 (только вниз)	
	Параллельность поперечного	А: в верт. плоскости 0.05/300 (только вниз)	
8	перемещения стола относительно оси шпинделя.	В: в гориз. плоскости 0.05/300	

9	Прямолинейность основания Т-образного паза.	0.03/500 Макс.: 0.05	
10	Перпендикулярность продольного перемещения стола относительно Т-образного паза	0.05/300	
11	Параллельность продольного перемещения стола относительно Т-образного паза	0.03/300 Max.: 0.05	
12	Перпендикулярность продольного и поперечного перемещения стола	0.04/300	
40	Параллельность оси шпинделя	А: в верт. плоскости 0.05/300 (только вниз)	
13	относительно направляющей хобота	В: в гориз. плоскости 0.05/300	
	Соосность центрального отверстия	А: в верт. плоскости 0.05 (только вниз)	
14	серьги и оси шпинделя.	В: в гориз. плоскости 0.05	
	Средство контроля:	Дата:	

15. Упаковочный лист

No.	Наименование	Модель	Кол-во
1	Станок		1
2	7:24 Переходная втулка		1
3	Оправка торцевой фрезы		1
4	Гаечный ключ	S21-24	каждый по 1
5	Шестигранный ключ	5, 6, 8,10, 12, 14	каждый по 1
7	Фрезерная оправка	φ27, φ32	каждый комплект по 1
8	Сверлильный патрон		1 комплект
9	Тяга		2
10	Гайка	M16	1
11	Шайба	16	1
12	Инструкция по эксплуатации		1
13	Испытательная таблица точности		1
14	Упаковочный лист		1
	Проверяющий:	Дата:	